Wavelength of Electromagnetic Radiation Emitted in Vacuum = |
The Rydberg equation for the wavelength (λ) of light is as follows:
The formula was conceived by the Swedish physicist Johannes Rydberg in the 19th century. It was later refined by Niels Bohr, who provided the physical interpretation of the formula in the early 20th century, and its application was extended beyond Hydrogen-like systems.
The Rydberg formula is used extensively in Spectroscopy, a scientific measurement technique used to assess the properties of matter and their interaction with electromagnetic radiation. It's vital in environmental science for monitoring air quality, in astronomy for identifying elements in stars, and in quantum computing for manipulating qubits.
Key contributors include Johannes Rydberg, who developed the initial formula, and Niels Bohr, who provided a physical interpretation of this formula as part of his model of the atom. More recently, the work of physicists like Richard Feynman and Julian Schwinger has deepened our understanding of quantum phenomena, including those described by the Rydberg equation.
The Rydberg equation plays a critical role in quantum physics and spectroscopy, allowing us to calculate the wavelengths of light emitted during electronic transitions in atoms. Understanding this equation, therefore, is not just about solving problems in physics, but also about gaining insights into the quantum world that forms the foundation of our universe.
You may also find the following Physics calculators useful.