Understanding the properties of fluids, such as density, specific heat, and thermal conductivity, among others, is crucial in the field of thermodynamics. These properties often change with temperature and are unique to each fluid. This tutorial focuses on substances like air, water, carbon dioxide, argon, helium, nitrogen, ethylene glycol, and its 30% and 50% solutions.
Density = |
Dynamic Viscosity = |
Kinematic Viscosity = |
Specific Heat = |
Conductivity = |
Thermal Diffusivity = |
Thermal Expansion Coefficient = |
Prandtl Number = |
The density of a fluid, for instance, can be computed using the ideal gas law (assuming the fluid behaves as an ideal gas) given by:
Where:
The ideal gas law was developed over time by multiple scientists including Boyle, Charles, and Avogadro, culminating in its present form in the mid-19th century. This law finds its relevance in fields such as thermodynamics, meteorology, and even engineering.
The ideal gas law is used in numerous real-world applications. For example, engineers use this formula to determine the air density in the intake manifold of an internal combustion engine to control the air-fuel ratio, thereby optimizing engine performance.
Robert Boyle, Jacques Charles, and Amedeo Avogadro are renowned scientists whose combined work resulted in the ideal gas law. They provided significant contributions to our understanding of the behavior of gases and their physical properties.
Understanding the fluid properties of various substances at different temperatures is integral in thermodynamics. The ideal gas law provides a simple and effective way to compute these properties, offering invaluable insights into the behavior of gases and contributing significantly to numerous scientific and engineering applications.
You may also find the following Physics calculators useful.